Международная группа ученых с участием исследователя из НИУ ВШЭ зафиксировала редкое оптическое излучение от одного из мощнейших гамма-всплесков в истории наблюдений. Астрофизики измерили параметры среды, в которой произошла вспышка, и смоделировали поведение гамма-всплеска. Это помогло ученым понять, почему такие вспышки сопровождаются электромагнитным излучением в видимом диапазоне.
Результаты опубликованы в журнале Nature Astronomy. Один из основателей современной астрофизики Иосиф Шкловский писал, что жизнь звезды — это вечная борьба между двумя силами: силой тяготения, которая стремится сжать звезду, и силой газового давления, которая пытается ее распылить. Когда термоядерные реакции в ядре звезды «выключаются», оно перестает поддерживать собственное равновесие и пытается сократиться в одну точку. Если подобное происходит со звездой, масса которой в десять и более раз превышает массу Солнца, случается коллапс: ядро сжимается, оболочка разлетается и происходит катастрофический взрыв галактического масштаба. В результате самые массивные звезды превращаются в черные дыры.
Взрыв сопровождается мощным всплеском гамма-излучения — потоком фотонов, несущих энергию в миллионы и более раз большую, чем кванты привычного нам видимого света. Гамма-всплеск — это чрезвычайно короткое по времени (может длиться от нескольких долей секунды до нескольких сотен секунд) и непредсказуемое явление. Никто не знает, где — в какой галактике — и в какой момент появится вспышка. Кроме того, гамма-излучение не проходит сквозь атмосферу Земли, поэтому всплеск можно зафиксировать только с помощью космического телескопа.
Гамма-всплески начали регистрировать с конца 1960-х годов. Долгое время ученые фиксировали только невидимое человеческому глазу гамма-излучение от вспышек. Однако существовали предположения, что эти всплески могут сопровождаться и оптическим излучением, которое можно увидеть с Земли. Наблюдать его впервые удалось 23 января 1999 года.
Для быстрой фиксации оптического излучения ученые разработали роботизированные телескопы. Они способны в режиме реального времени собирать данные с места вспышки. Гамма-всплеск 20 июня 2021 года — один из самых мощных среди тех, что удалось пока зафиксировать, — исследователи наблюдали с помощью телескопов в Чехии и Испании, а также российской системы Mini-MegaTORTORA Казанского федерального университета, которая находится на Северном Кавказе. Они начали фиксировать свечение через 28 секунд после гамма-вспышки. Данные, полученные одновременно с трех телескопов, позволили восстановить общую форму кривой блеска, наклон оптического спектра в зависимости от времени, а также выявить раннюю эволюцию цвета оптического излучения (см. рисунок).
«Нам повезло. Во-первых, мы увидели достаточно яркое сопутствующее излучение. Во-вторых, наблюдали его с хорошим временным разрешением: делали кадры с высокой частотой. В-третьих, получили информацию о спектре оптического излучения. В системе Mini-MegaTORTORA наблюдения удалось провести синхронно в двух оптических фильтрах — синем и желто-зеленом. То есть мы измерили не просто общую яркость, а яркость в отдельных цветах. Это редкий, почти уникальный случай», — комментирует один из соавторов исследования, доцент факультета физики НИУ ВШЭ Антон Бирюков.
Подробные данные об излучении в оптическом и других диапазонах позволили определить физические параметры среды гамма-всплеска в той области, где генерировалось оптическое излучение. «Тот обширный набор данных, который получила группа, позволил заглянуть внутрь этой машины гамма-всплеска. Мы будто скальпелем разрезали гамма-всплеск и посмотрели, что там происходит: какие движутся частицы, какая у них энергия, какова плотность среды, какие магнитные поля», — поясняет ученый.
Авторы исследования пришли к выводу, что свечение при гамма-всплеске возникает из-за того, что заряженные частицы высокой энергии, скорость которых почти неотличима от скорости света, движутся в разреженной среде с сильным магнитным полем. «Гамма-всплески — своего рода маяки из ранней Вселенной. Ведь мы фиксируем эти явления на расстоянии в несколько миллиардов световых лет. Это те немногие источники, которые позволяют нам узнать, как были устроены звезды миллиарды лет назад, как завершалось их существование, какая была межзвездная среда, их окружавшая: сколько там было газа и какого, как он взаимодействовал с разлетающимися оболочками звезд», — говорит Антон Бирюков.
Изучение гамма-всплесков не только расширяет наши знания о самых массивных далеких звездах. С точки зрения фундаментальной физики гамма-всплески — это естественные физические лаборатории, в которых реализуются наиболее экстремальные условия: сверхвысокие энергии, скорости, плотности, силы тяготения. Именно такие состояния позволяют ученым проверять те физические теории, которые известны человечеству.
«Физики отдают себе отчет в том, что существующие фундаментальные теории, которые описывают мир, — теория относительности и квантовая механика — имеют свои границы применимости. Нащупать эти границы мы можем только экспериментально. Гамма-всплеск — один из таких естественных экспериментов. Однако обнаружить границы не так легко. Необходимо продолжать наблюдения и предпринимать попытки детального описания как можно большего количества подобных событий, чтобы накопить достаточный объем информации. Но это естественный ход научного познания», — подытоживает астрофизик.
По информации https://naked-science.ru/article/column/astrofiziki-zaglyanuli-vnutr-moshhnogo