Когда 15 января 2022 года произошло извержение вулкана Хунга-Тонга-Хунга-Хаапай (Hunga Tonga-Hunga Haapai), оно вызвало атмосферные ударные волны, звуковые удары и волны цунами по всему миру. Теперь ученые обнаружили, что последствия извержения вулкана достигли и космоса.
Анализируя данные, полученные с помощью спутника NASA Ionospheric Connection Explorer (ICON) и спутников ЕКА (Европейское космическое агентство) Swarm, ученые обнаружили, что через несколько часов после извержения в ионосфере - наэлектризованном верхнем слое атмосферы Земли на краю космоса - образовались ураганные ветры и необычные электрические токи.
"Вулкан создал одно из крупнейших возмущений в космосе, которые мы наблюдали в современную эпоху", - сказал Брайан Хардинг, физик из Калифорнийского университета в Беркли и ведущий автор новой статьи, в которой обсуждаются полученные результаты. "Это позволяет нам проверить плохо изученную связь между нижними слоями атмосферы и космосом".
ICON стартовал в 2019 году, чтобы определить, как земная погода взаимодействует с погодой из космоса - относительно новая идея, вытесняющая прежние предположения о том, что только силы из солнца и космоса могут создавать погоду на границе ионосферы. В январе 2022 года, когда космический аппарат проходил над Южной Америкой, он наблюдал одно такое земное возмущение в ионосфере, вызванное вулканом в южной части Тихого океана.
"Эти результаты - захватывающий взгляд на то, как события на Земле могут влиять на погоду в космосе, в дополнение к космической погоде, влияющей на Землю", - сказал Джим Спанн, руководитель отдела космической погоды Отдела гелиофизики НАСА в штаб-квартире НАСА в Вашингтоне, округ Колумбия. "Понимание космической погоды в целом поможет нам в конечном итоге смягчить ее влияние на общество".
Когда вулкан извергся, он выбросил в небо гигантский шлейф газов, водяного пара и пыли. Взрыв также создал большие возмущения давления в атмосфере, что привело к сильным ветрам. По мере того как ветры поднимались вверх в более тонкие слои атмосферы, они стали двигаться быстрее. Достигнув ионосферы и границы космоса, ICON зафиксировал скорость ветра до 725 километров в час - это самые сильные ветры на высоте менее 190 километров, измеренные аппаратом с момента его запуска.
В ионосфере экстремальные ветры также повлияли на электрические токи. Частицы в ионосфере регулярно формируют электрический ток, направленный на восток, так называемая экваториальная электроструя, который приводится в движение ветрами в нижних слоях атмосферы. После извержения экваториальная электроструя увеличился в пять раз по сравнению с обычной пиковой мощностью и резко изменил направление, на короткое время направившись на запад.
"Очень удивительно наблюдать, как электроструи сильно изменили свое направление из-за того, что произошло на поверхности Земли", - говорит Джоан Ву, физик из Калифорнийского университета в Беркли и соавтор нового исследования. "Такое мы ранее наблюдали только при сильных геомагнитных бурях, которые являются формой погоды в космосе, вызванной частицами и радиацией Солнца".
Новое исследование, опубликованное в журнале Geophysical Research Letters, расширяет понимание учеными того, как на ионосферу влияют события на земле, а также из космоса. Сильная экваториальная электроструя связана с перераспределением материала в ионосфере, что может нарушить GPS и радиосигналы, которые передаются через этот регион.
Понимание того, как эта сложная область нашей атмосферы реагирует на сильные воздействия снизу и сверху, является ключевой частью исследований НАСА. Предстоящая миссия NASA Geospace Dynamics Constellation (GDC) будет использовать флот небольших спутников, похожих на наземные датчики глубокого залегания, для отслеживания электрических токов и атмосферных ветров, проходящих через этот район. Лучше понимая, что влияет на электрические токи в ионосфере, ученые смогут лучше подготовиться к прогнозированию серьезных проблем, вызванных такими возмущениями.
По информации https://www.astronews.ru/cgi-bin/mng.cgi?page=news&news=20220511123235
Обозрение "Terra & Comp".